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Kibana dashboards represent multiple advanced machine learning
jobs. The graphs cover connection event rate, user
authentication, and real-time system usage statistics. The data
came from multiple NASA Center for Climate Simulation (NCCS)
production systems and was filtered and ingested with Logstash
and Metricbeat. Red to yellow squares and dots represent
possible anomalies found with their date and time. X-Pack
machine learning (ML) features classify anomalies according to
confidence based on the model baseline. Jordan A. Caraballo-Vega,
Jasaun J. Neff, NASA/Godadard
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Workflow of our ML SIEM infrastructure. Log data from systems (A)-CPU metrics, firewalls, switches,
servers, and others—are parsed and stored in a log storage cluster (B). After messages are indexed,
they are analyzed through ML models where analysis functions like mean, sum, and many others are
calculated to identify deviations from baseline values and their influencers. Results can be visualized in
dashboards (C) including real-time graphs and specific anomaly information.

Jordan A. Caraballo-Vega, Jasaun J. Neff, NASA/Goddard

National Aeronautics and
Space Administration

Cybersecurity Machine

ASA Center for Climate Simulation (NCCS) currently

uq n s’ﬁd stores logs from thousands of assets and a wide
jarie bf vices. In order to enhance and improve our ability to
uw_f naly and monitor our systems, we implemented

n euj-t ﬁnsed machine learning technlques and a security

1for |‘nlétn event management (SIEM) mfrastructure for

tecting anoma e vy
“kﬂ‘

K (ElaS |CSearcr i 'E-'ﬂil:ii l:ﬂm}“‘ ;Pk-u .
1gest data and analyze it with

built al

f fsi-r-mulf 0 fllter AN(

- machine (.rf |ng model

and othe esources lachine learning was highly effective
and useful (m—.»- al zmg real-time and archived data and will

emerge AS a pa erﬁﬁ‘hnalytlcs technique for log analysis and ¢

great engl[l SIEM ,_ |

Jordan A. oF:
Jasaun J. Neff,

[m] e [w]

o

| |
/) |

L
5

ombination with Kibana dashboards

NG




